
Selected Solutions for Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time form input permutations, then the heighth of the
portion of the decision tree consisting of them corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible form D nŠ=2, nŠ=n, or nŠ=2n.

We have2h � m, which gives ush � lg m. For all the possiblem’s given here,
lg m D �.n lg n/, henceh D �.n lg n/.

In particular,

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modified algorithm is not stable. As before, in the final for loop an element
equal to one taken fromA earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrrayB . The original algorithm was stable because
an element taken fromA later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken fromA later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements withvalue k in positions
C Œk � 1� C 1 throughC Œk�, but in the reverse order of their appearance inA.



8-2 Selected Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-3

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works ford � 1 digits, we’ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of
d digits, which sorts on digits1; : : : ; d is equivalent to radix sort of the low-order
d � 1 digits followed by a sort on digitd . By our induction hypothesis, the sort of
the low-orderd � 1 digits works, so just before the sort on digitd , the elements
are in order according to their low-orderd � 1 digits.

The sort on digitd will order the elements by theird th digit. Consider two ele-
ments,a andb, with d th digitsad andbd respectively.

� If ad < bd , the sort will puta beforeb, which is correct, sincea < b regardless
of the low-order digits.

� If ad > bd , the sort will puta afterb, which is correct, sincea > b regardless
of the low-order digits.

� If ad D bd , the sort will leavea andb in the same order they were in, because
it is stable. But that order is already correct, since the correct order ofa andb

is determined by the low-orderd � 1 digits when theird th digits are equal, and
the elements are already sorted by their low-orderd � 1 digits.

If the intermediate sort were not stable, it might rearrangeelements whosed th
digits were equal—elements thatwere in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-4

Treat the numbers as3-digit numbers in radixn. Each digit ranges from0 to n � 1.
Sort these3-digit numbers with radix sort.

There are3 calls to counting sort, each taking‚.n C n/ D ‚.n/ time, so that the
total time is‚.n/.

Solution to Problem 8-1

a. For a comparison algorithmA to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be at leastnŠ leaves reached inTA,
one for each possible input permutation. SinceA is a deterministic algorithm, it
must always reach the same leaf when given a particular permutation as input,
so at mostnŠ leaves are reached (one for each permutation). Therefore exactly
nŠ leaves are reached, one for each input permutation.



Selected Solutions for Chapter 8: Sorting in Linear Time 8-3

ThesenŠ leaves will each have probability1=nŠ, since each of thenŠ possible
permutations is the input with the probability1=nŠ. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of thisproblem that paths
leading only to0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assume thatTA consists of only the
nŠ leaves labeled1=nŠ and their ancestors.

b. If k > 1, then the root ofT is not a leaf. This implies that all ofT ’s leaves
are leaves inLT andRT . Since every leaf at depthh in LT or RT has depth
h C 1 in T , D.T / must be the sum ofD.LT /, D.RT /, andk, the total number
of leaves. To prove this last assertion, letdT .x/ D depth of nodex in treeT .
Then,

D.T / D
X

x2leaves.T /

dT .x/

D
X

x2leaves.LT /

dT .x/ C
X

x2leaves.RT /

dT .x/

D
X

x2leaves.LT /

.dLT .x/ C 1/ C
X

x2leaves.RT /

.dRT .x/ C 1/

D
X

x2leaves.LT /

dLT .x/ C
X

x2leaves.RT /

dRT .x/ C
X

x2leaves.T /

1

D D.LT / C D.RT / C k :

c. To show thatd.k/ D min1�i�k�1 fd.i/ C d.k � i/ C kg we will show sepa-
rately that

d.k/ � min
1�i�k�1

fd.i/ C d.k � i / C kg

and

d.k/ � min
1�i�k�1

fd.i/ C d.k � i / C kg :

� To show thatd.k/ � min1�i�k�1 fd.i/ C d.k � i/ C kg, we need only show
thatd.k/ � d.i/ C d.k � i/ C k, for i D 1; 2; : : : ; k � 1. For anyi from 1

to k � 1 we can find treesRT with i leaves andLT with k � i leaves such
thatD.RT / D d.i/ andD.LT / D d.k � i/. ConstructT such thatRT and
LT are the right and left subtrees ofT ’s root respectively. Then
d.k/ � D.T / (by definition ofd as minD.T / value)

D D.RT / C D.LT / C k (by part (b))

D d.i/ C d.k � i/ C k (by choice ofRT andLT ) .
� To show thatd.k/ � min1�i�k�1 fd.i/ C d.k � i/ C kg, we need only show

thatd.k/ � d.i/ C d.k � i/ C k, for somei in f1; 2; : : : ; k � 1g. Take the
treeT with k leaves such thatD.T / D d.k/, let RT andLT beT ’s right
and left subtree, respecitvely, and leti be the number of leaves inRT . Then
k � i is the number of leaves inLT and
d.k/ D D.T / (by choice ofT )

D D.RT / C D.LT / C k (by part (b))

� d.i/ C d.k � i/ C k (by defintion ofd as minD.T / value) .



8-4 Selected Solutions for Chapter 8: Sorting in Linear Time

Neitheri nork � i can be0 (and hence1 � i � k � 1), since if one of these
were0, eitherRT or LT would contain allk leaves ofT , and thatk-leaf
subtree would have aD equal toD.T / � k (by part (b)), contradicting the
choice ofT as thek-leaf tree with the minimumD.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value ofi that minimizesfk,
find thei for which the derivative offk with respect toi is 0:

f 0

k.i/ D
d

di

�

i ln i C .k � i/ ln.k � i/

ln 2

�

D
ln i C 1 � ln.k � i/ � 1

ln 2

D
ln i � ln.k � i /

ln 2
is 0 at i D k=2. To verify this is indeed a minimum (not a maximum), check
that the second derivative offk is positive ati D k=2:

f 00

k .i/ D
d

di

�

ln i � ln.k � i/

ln 2

�

D
1

ln 2

�

1

i
C

1

k � i

�

:

f 00

k .k=2/ D
1

ln 2

�

2

k
C

2

k

�

D
1

ln 2
�

4

k
> 0 sincek > 1 .

Now we use substitution to proved.k/ D �.k lg k/. The base case of the
induction is satisfied becaused.1/ � 0 D c � 1 � lg 1 for any constantc. For
the inductive step we assume thatd.i/ � ci lg i for 1 � i � k � 1, wherec is
some constant to be determined.

d.k/ D min
1�i�k�1

fd.i/ C d.k � i/ C kg

� min
1�i�k�1

fc.i lg i C .k � i/ lg.k � i// C kg

D min
1�i�k�1

fcfk.i/ C kg

D c

�

k

2
lg

k

2

�

k �
k

2

�

lg

�

k �
k

2

��

C k

D ck lg

�

k

2

�

C k

D c.k lg k � k/ C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and sod.k/ D �.k lg k/.

e. Using the result of part (d) and the fact thatTA (as modified in our solution to
part (a)) hasnŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :



Selected Solutions for Chapter 8: Sorting in Linear Time 8-5

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Since thenŠ

permutations have equal probability1=nŠ, the expected time to sortn random
elements (1 input permutation) is the total time for all permutations divided
by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a
deterministic decision tree (algorithm) that is at least asgood as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to aleaf). Delete all
the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modifiedtree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

The average number of comparisons for the modified algorithmis no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

� the same set of input permutations reaches the modified subtree as before, but
those inputs are handled in less than or equal to average timethan before, and

� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We’ve shown that the expected running time
for a deterministic comparison sort is�.n lg n/, hence the expected time for a
randomized comparison sort is also�.n lg n/.)


