Selected Solutionsfor Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time fom input permutations, then the heightof the
portion of the decision tree consisting of the corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to shavththas impos-
sible form = n!/2,n!/n, orn!/2".

We have2" > m, which gives ush > Igm. For all the possible:’s given here,
lgm = Q(nlgn), henceh = Q(nlgn).

In particular,

n!
Igj = Ign!'—1>nlgn—nlge—1,

n!
lg— = lIgn!—Ign >nlgn—nlge—Ign,
n

n!
Igz—n = lgn!—n=>nlgn—nlge—n.

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does natrdepn the order in
which A is processed. The algorithm is correct no matter what osdased!

But the modified algorithm is not stable. As before, in thelffoaloop an element
equal to one taken from earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrra®. The original algorithm was stable because
an element taken fror later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken frotrater started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements witdiue k£ in positions
Clk — 1] + 1 throughC k], but in the reverse order of their appearancdin

8-2 Selected Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-3

Basis: If d = 1, there’s only one digit, so sorting on that digit sorts thegr

Inductive step: Assuming that radix sort works fat — 1 digits, we’ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting fronit digThus, radix sort of
d digits, which sorts on digit$, . . ., d is equivalent to radix sort of the low-order
d — 1 digits followed by a sort on digi# . By our induction hypothesis, the sort of
the low-orderd — 1 digits works, so just before the sort on digit the elements
are in order according to their low-ordér— 1 digits.

The sort on digitd will order the elements by theifth digit. Consider two ele-
mentsa andb, with dth digitsa,; andb, respectively.

* If ay < by, the sortwill puta beforeb, which is correct, since < b regardless
of the low-order digits.

* If ag > by, the sort will puta afterb, which is correct, since > b regardless
of the low-order digits.

* If ay = by, the sort will leaver andb in the same order they were in, because
it is stable. But that order is already correct, since theembrorder oz andb
is determined by the low-ordetr— 1 digits when their/th digits are equal, and
the elements are already sorted by their low-oetler 1 digits.

If the intermediate sort were not stable, it might rearraatgments whoséth
digits were equal—elements thakre in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-4

Treat the numbers &sdigit numbers in radix. Each digit ranges frorfdton — 1.
Sort thesa&-digit numbers with radix sort.

There are calls to counting sort, each takitg(n + n) = @(n) time, so that the
total time iSO (n).

Solution to Problem 8-1

a. For a comparison algorithm to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be att¢dsaves reached ifiy,
one for each possible input permutation. Siddes a deterministic algorithm, it
must always reach the same leaf when given a particular gatimn as input,
so at mosku! leaves are reached (one for each permutation). Therefatgx
n! leaves are reached, one for each input permutation.

Selected Solutions for Chapter 8: Sorting in Linear Time 8-3

Thesen! leaves will each have probability/n!, since each of the! possible
permutations is the input with the probabilityn!. Any remaining leaves will
have probabilityd, since they are not reached for any input.

Without loss of generality, we can assume for the rest offfoblem that paths
leading only to0-probability leaves aren't in the tree, since they canntacaf
the running time of the sort. That is, we can assumeZhabnsists of only the
n! leaves labeled/n! and their ancestors.

b. If kK > 1, then the root off" is not a leaf. This implies that all ¢f's leaves
are leaves in.T andRT. Since every leaf at depthin LT or RT has depth
h+1inT, D(T) mustbe the sumaD(LT), D(RT), andk, the total number
of leaves. To prove this last assertion, det(x) = depth of nodex in treeT .
Then,

D(T) = > drx

x€leavesT)

=) drm+ Y, dr(»
x€leave{LT) x€leave§RT)

= Y (dr®™M+D+ Y (drr(x)+1)
x€leave§LT) x€leave§RT)

= Y duwM+ Y, der@)+ Y 1
x€leave§LT) x€leave§RT) x€leavegT)

= D(LT)+ D(RT) + k.
c. To show thatd(k) = min;<;<x—1{d(i) + d(k —i) + k} we will show sepa-
rately that

dk) < l<rirli]£1_1{a’(i) +dk—i)+k}
and
dk) = l<rirlip_l{al(i) +dk—-i)+k} .

* Toshowthat/(k) < minj<;<x—1{d(i) + d(k —i) + k}, we need only show
thatd(k) <d(i)+d(k —i)+ k,fori =1,2,...,k— 1. For anyi from 1
tok — 1 we can find treeR T with i leaves and.T with k — i leaves such
thatD(RT) = d(i)andD(LT) = d(k —i). Constructl” such thatR T and
LT are the right and left subtrees Bfs root respectively. Then
dk)y < D(T) (by definition ofd as minD(T') value)

= D(RT)+ D(LT) + k (by part (b))
= d(@{)+dk—i)+k (bychoice ofRT andLT).

« Toshowthatd(k) > min,<;<x—; {d(i) + d(k — i) + k}, we need only show
thatd(k) > d(i) + d(k —i) + k, for somei in {1,2,...,k — 1}. Take the
treeT with k leaves such thab(T) = d(k), let RT andLT beT’s right
and left subtree, respecitvely, andidie the number of leaves IRT. Then
k — i is the number of leaves ihT and
dk)y = D(T) (by choice ofT)

= D(RT)+ D(LT) + k (by part (b))
> d(i)+dk—i)+k (bydefintion ofd as minD(T) value) .

Selected Solutions for Chapter 8: Sorting in Linear Time

Neitheri nork —i can be0 (and hencd < i < k — 1), since if one of these
were0, eitherRT or LT would contain allk leaves ofT’, and thatk-leaf
subtree would have & equal toD(T') — k (by part (b)), contradicting the
choice ofT" as thek-leaf tree with the minimunD.

d. Let fx(i) =ilgi + (k—i)lg(k —i). To find the value of that minimizesfy,
find thei for which the derivative off; with respect ta is 0:

L d (ilni+ (k—i)In(k —i)
S = E(In2)
o Ini+1—Intk—i)—1
N In2
_Ini —In(k —i)

In2

is0 ati = k/2. To verify this is indeed a minimum (not a maximum), check
that the second derivative ¢f, is positive at = k/2:

yo o d (Ini—In(k —i)
o = (M)

_11+1
 mn2\i k—-i)~

1 (2 2
//k2 — - - -
e k/2) In2(k+k)
1 4

In2 &k
> 0 sincek > 1 .

Now we use substitution to prow&k) = Q(klgk). The base case of the
induction is satisfied becaugkl) > 0 = ¢ - 1 -1g 1 for any constant. For
the inductive step we assume thii) > cilgi for1 <i < k — 1, wherec is
some constant to be determined.

de) = min {d()+d(k —i)+ K}
llrriip_l (e(i1gi + (k —i) gtk — i) + k}

= min {cfi) +k}

- (0 (+=4)o(o-5)
- kg (5) ++

c(klgk —k) +k

%

= cklgk + (k —ck)
> cklgk ifc<l,
and sad (k) = Q(klgk).

e. Using the result of part (d) and the fact that (as modified in our solution to
part (a)) has! leaves, we can conclude that

D(Ty) = dn") = Q@!lgn!)) .

Selected Solutions for Chapter 8: Sorting in Linear Time 8-5

D(T,) is the sum of the decision-tree path lengths for sortingrgut per-
mutations, and the path lengths are proportional to theirne.tSince the:!
permutations have equal probabilityn!, the expected time to soutrandom
elements [input permutation) is the total time for all permutationsided
byn!:

w = S(lg(nh) = Q(nlgn) .

f. We will show how to modify a randomized decision tree (altfor) to define a
deterministic decision tree (algorithm) that is at leagi@sd as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallestrse(the subtree
with the smallest average number of comparisons on a patletd)a Delete all
the other children of the randomized node and splice outgdhdamized node
itself.

The deterministic algorithm corresponding to this modified still works, be-
cause the randomized algorithm worked no matter which pathtaken from
each randomized node.

The average number of comparisons for the modified algorihmo larger

than the average number for the original randomized treegsive discarded
the higher-average subtrees in each case. In particuldr.teae we splice out
a randomized node, we leave the overall average less thajuat t what it

was, because

* the same set of input permutations reaches the modifiecesudtrbefore, but
those inputs are handled in less than or equal to averagéttandefore, and

* the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much timeemnage as the
corresponding deterministic one. (We've shown that thesetgrd running time
for a deterministic comparison sort@(n Ign), hence the expected time for a
randomized comparison sort is al€gn Ig n).)

